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Abstract: The  anisotropic  absorption  and  emission  from  semiconductor  CdSe/CdS  quantum  rods  (QRs)  provide  extra  benefits
among  other  photoluminescence  nanocrystals.  Using  photo-induced  alignment  technique,  the  QRs  can  be  oriented  in  liquid
crystal  polymer matrix  at  a  large scale.  In  this  article,  a  2D Dammann grating pattern,  within “SKL” characters  domains aligned
QRs  in  composite  film,  was  fabricated  by  multi-step  photo  exposure  using  several  photo  masks,  and  a  continuous  geometric
lens  profile  pattern  aligned  QRs  was  realized  by  the  single  step  polarization  converting  holographic  irradiation  method.  Both
polarized  optical  microscope  and  fluorescence  microscope  are  employed  to  determine  the  liquid  crystal  director  profiles  and
QRs  anisotropic  excitation  properties.  We  have  been  able  to  orient  the  QRs  in  fine  binary  and  continuous  patterns  that  con-
firms  the  strong  quantum  rod  aligning  ability  of  the  proposed  method.  Thus,  the  proposed  approach  paves  a  way  for  photo-
induced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.
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1.  Introduction

Semiconductor  quantum  materials,  such  as  quantum
dots[1] and perovskite nanocrystals[2],  exhibit  unique photolu-
minescence with high quantum yield and luminescence prop-
erties[3, 4].  Owing  to  their  tunable  fluorescent  properties,  nar-
row  bandwidth  emission  and  stable  chemical  properties,  the
quantum  nanocrystals  are  used  in  modern  displays  for  wide
color  gamut[5−7].  For  example,  replacing  both  organic  dyes
and  inorganic  phosphors,  the  quantum  nanocrystals  work  as
color  down-converters  for  blue  light-emitting  diodes  (LEDs)
backlight  unit  of  liquid  crystal  displays  (LCDs)[8−13].  Other
than 0D quantum dots,  both 1D quantum rods  (QRs)  and 2D
nanoplatelets  could  offer  an  added  advantage  for  LCDs  due
to  the  partially  polarized  absorption  and  emission
properties[14−17].  Among  the  above  nanocrystals,  the
anisotropic  optical  properties  in  CdSe/CdS  QRs,  including  an
increased  absorption  and  partially  polarized  emission  along
the  long  axis,  when  the  aspect  ratio  of  the  shell  exceeds
1.2  :  1[14].  As  the  typical  CdSe/CdS  QRs,  both  dot-in-rods  and
rod-in-rods structured exhibit  the additional  anisotropy origi-
nating  from  the  splitting  of  the  exciton  fine  structure  in  the
wurtzite  CdSe  core[18].  According  to  the  band-edge  exciton
fine  structure,  the  room  temperature  emission  from  QRs  is  a
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mixture  of  recombinations  from  the  state  and  from  the

degenerate ,  states.  The  state  is  associated
with  a  linear  1D  dipole  that  oscillates  along  the  long  axis  of
the rods and emits linearly polarized photons, while the 

and  states  can  be  seen  as  2D  dipoles,  containing  the
oscillating  around  the  core  and  along  the  shell,  respectively.
The 2D dipoles are also equivalent to 2 linear dipoles, oscillat-
ing perpendicularly and in quadrature into the plane perpen-
dicular  to  the  long  axis  of  the  QRs[19−21].  The  elongated
shaper induces the level ordering and the oscillator strengths
of  the  various  transitions.  In  the  excited  state,  the  electron
wavefunction  from  the  CdSe  core  is  able  to  extend  into  the
conduction  band  of  the  CdS  shell,  and  into  the  shell  volume
to create polarized emission[15, 22−24].  Therefore, the degree of
the  polarization  for  the  total  emission  strongly  depends  on
the relative oscillator strengths of two oscillators mutually oscil-
lating in an orthogonal plane.

However,  the  proper  processing  is  required  for  those
anisotropic  non-spherical  nanocrystals  to  be  assembled  with
a  high  degree  of  orientational  order,  so  as  to  gain  the  bene-
fits  of  the  linearly  polarized  emission  as  an  ensemble.  Many
techniques have been explored in this regard, including evapo-
ration-mediated  assembly[25],  magnetic  field-assisted  assem-
bly[26],  electric  field-assisted assembly[27−29],  template-assisted
assembly[30],  mechanical  rubbing[31],  liquid  crystal  self-align-
ment[32],  Langmuir-Blodgett deposition[33],  electrospinning[34],
stretching  of  polymer  matrix[22].  Among  all  above
approaches, the photo-induced CdSe/CdS QRs alignment was
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developed,  offering  high  spatial  alignment  resolution  as  well
as facilitating QRs aligning in liquid crystal polymer (LCP) net-
works[35−45].  When  exposed  by  a  450  nm  polarized  light,  the
azo-dye  molecules  SD1,  as  shown  in Fig.  1(a),  are  reorien-
tated  from  the  initial  position  to  the  direction  orthogonal  to
the  E-vector  of  the  exposure  light  for  minimizing  absorption
due  to  the  transition  dipole  moments  of  the  molecules[46].
The  photo-aligned  SD1  layer  transfers  the  anchoring  torque
to  the  LCP  molecules,  as  shown  in Fig.  1(b),  and  aligns  them
in  a  direction  parallel  to  the  easy  axis[47, 48].  Simultaneously,
due  to  the  repulsive  intermolecular  forces  between  the  QRs
passivating  ligands  (alkylphosphonic  acids)  and  LCP
molecules,  which  exert  counter-torque  on  QRs,  QRs  are
aligned  perpendicular  to  the  easy  axis  of  the  SD1  molecules.
The QRs ligands, to minimize the bulk energy, try to fit  in the
monomer matrix  like a comb, resulting a long range order to
QRs alignment[35, 42, 43].

Traditional security films are often made of polymer mate-
rials  and  have  features  such  as  holograms,  watermarks,  and
micro-text to prevent counterfeiting. In addition to these con-
ventional  features,  the  anisotropic  absorption  and  emission
properties  of  QRs  offer  a  unique  and  advanced  approach  to
enhancing the security of documents. In this paper, we demon-
strate a flexible CdSe/CdS QRs alignment in QRs-LCP compos-
ite  films,  facilitated  by  photo-induced  alignment  technique.
With  the  unique  reorientation  property  of  SD1,  a  2D
Dammann  grating  pattern  within “SKL” characters  domains
aligned QRs-LCP composite  film was  fabricated by  multi-step
polarized  irradiation  using  several  shadow-masks.  The
secured  information “SKL” presents  watermark  under  ambi-
ent  light,  red  color  emission  under  ultra-violet  or  blue  light,
as  well  as  diffraction  hologram  with  incident  beam,  provid-
ing a highly specific and difficult-to-replicate security feature.

To  further  present  the  flexibility  of  photo-induced  align-
ment  technique,  single  step  polarization  holographic  irradia-
tion  for  Pancharactnam  Berry  optical  lens  pattern  aligned
QRs-LCP  composite  film  was  exhibited  to  achieve  the  in-
plane  continuously  varying  alignment  axis  of  QRs.  The  polar-

ized  fluorescence  microscopy  (FM)  images  confirm  the  flexi-
ble QRs alignment in the composite films, indicating the poten-
tial  applications  of  these  uniquely  aligned  QR  films  in  secu-
rity, displays and photonics areas. 

2.  Experimental results
 

2.1.  Unidirectional photo-induced QRs alignment

The  unidirectional  photo-induced  QRs  alignment  pro-
cess  flow  is  shown  in Fig.  1(c).  A  solution  of  SD1  in  N,N-
Dimethylmethanamide  (DMF)  is  spin  coated  on  a  glass  sub-
strate,  which  is  baked  at  100  °C  for  5  min  to  remove  exces-
sive  solvent.  The  thin  film  of  SD1  is  then  exposed  to  linearly
polarized  blue  (450  nm)  light,  offering  an  almost  zero  pretilt
angle  (<0.2°)  and  high  anchoring  energy  (~10−3 J/m2)[47].  The
solution  of  highly  emissive  semiconductor  QRs  mixed  in  the
LCP  matrix  is  deposited  on  the  SD1  layer  by  spin  coating.
With  evaporating  majority  part  of  the  solvent,  the  LCP
molecules are highly ordering aligned following the easy axis
of SD1 layer. At the same time, the QRs in the mixture are ori-
ented  to  the  perpendicular  direction  of  LCP  alignment,  due
to  the  repulsive  force  between  the  QRs  ligands  and  LCP
molecules.  To  solidify  the  obtained  composite  layer  and
freeze the alignment of QRs,  the films are photo polymerized
by  high  power  UV  light  with  vacuum,  which  speeds  up  the
polymerization process as well as reduces the defects of re-ori-
entation  of  QRs  and  LCP  due  to  the  unpolarized  UV  light
source.  The  resulting  films  should  show  good  stability,  high
transparency and birefringence under cross polarizer.

To  examine  the  long-range  orientation  of  the  QRs  in  the
composite  film,  optical  characterization  by  polarized  photo
spectrometer is employed as a standard characterization tech-
nique.  The  polarization  ratio,  or  degree  of  polarization  of  the
QRs  emission  excited  by  a  450  nm  laser  can  be  measured  by
rotating the polarizer in front of the spectrometer. The polariza-
tion azimuth of the laser is set in line with the alignment direc-
tion of the QRs, to achieve the maximum absorption and emis-
sion[37, 38]. 

 

(a)

(b)

(c)

Fig. 1. (Color online) Photo-induced QRs alignment. Chemical structure of (a) SD1 and (b) LCP. (c) Process flow for unidirectional QRs alignment.
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2.2.  2D Dammann pattern QRs alignment

Dammann  gratings,  first  proposed  by  Dammann  and
Gortler in 1971, are specially designed binary phase (0, π) grat-
ings  that  can  create  a  diffraction  pattern  where  the  intensi-
ties  of  the  diffracted  spots  are  equal  in  some  orders[49].  The
Dammann  gratings  have  been  proposed  for  usage  in  lots  of
interesting applications,  such as laser beam summation,  opti-
cal digital computing, optical interconnections, 3D lattice struc-
tures  generation,  3D  optical  imaging,  etc.  Here,  the  QRs  are
aligned  along  Dammann  pattern  with  special  characters  for
potential security applications.

The re-writability of SD1 allows us to change the orienta-
tion of the easy axis several times by sequential energy expo-
sures. This unique re-orientation property provides an opportu-
nity  to  precisely  modify  the  pre-alignment  and  realize  the
multi-alignment  domains  on  the  same  substrate  by  multi-
step  exposures[36, 47].  This  advantage  offers  a  possibility  to
align  QRs  in  LCP  composite  films  with  several  domains  by
using shadow masks.

Fig. 2(a) introduces the patterned photo-alignment fabrica-
tion process flow using multi exposure steps. The QRs-LCP mix-
ture,  coated  on  the  top  of  these  SD1  coated  substrate,  fol-
lows  the  alignment  induced  by  the  SD1  and  the  composite
film  can  be  polymerized  afterwards.  The  SD1  layer  is  firstly
aligned along the long side of the substrate by illumination it
with  the  linearly  polarized  light  (here  denoted  as θ =  0°, λ =
450 nm). Subsequent exposure with polarized light of orthogo-
nal  polarization  azimuth  (here θ =  90°)  re-orients  the  easy
axis  of  SD1  by  restricting  the  exposed  area  through  a  7  ×  7
Dammann  grating  photo-mask,  as  shown  in Fig.  2(b).
Thereby  inducing  the  orthogonal  alignment  direction  in  the
two  domains.  Note  that  the  difference  of θ between  the  first
and  second  exposure  defines  the  mutual  orientation  of  the
easy  axis  within  different  alignment  domains.  To  obtain  the
maximum  contrast  between  adjacent  domains  we  fixed  the
mutual  angle  between  the  two  alignment  easy  axis  at  90°.
The  3rd alignment  of  the  same  polarization  azimuth,  cover-
ing  another  photomask  of “SKL” characters,  the  area  out  of
the  characters  is  transparent  for  the  3rd exposure,  whereas
the  area  blocked  by  the  characters  maintains  the  Dammann
grating pattern.  The active area ,  enclosed by a red square,  is
shown  in Fig.  2(c),  while  the  area  outside  the  square  is  filled

with  unaligned  QR-LCP  film,  resulting  in  a  hazy  appearance.
After  polymerization  of  the  deposited  QRs-LCP  mixtures,  the
active  area  in Fig.  2(c)  displays  the  hazy “SKL” characters  due
to  the  micro-grating  domain  structures.  The  area  outside  the
“SKL” characters  maintains  a  unidirectional  alignment  of  QR-
LCP, resulting in a clear and transparent appearance.

Fig.  2(d)  shows  the  diffraction  pattern  of  the  Dammann
grating, instead of normal diffraction pattern of dots from tradi-
tional  gratings,  the  7  ×  7 “SKL” characters  are  equally  dis-
tributed  on  the  screen,  presenting  unique  diffraction  fea-
tures  of  the  composite  film  and  indicating  the  potential
usage  for  security  application.  Since  the  LCP  film  is  not  thick
enough  for  half  wave  phase  retardation  of  the  laser  beam,
the  diffractive  zero  order  cannot  be  suppressed,  leaving  a
strong zero order intensity at the center of the diffraction pat-
tern on the screen.

Other  than  diffraction  pattern,  the  microscopic  patterns
(see Fig.  3),  are  also  security  features  for  the  application.  In
the  bright  field,  the  QRs-LCP  composite  film  between  cross
polarizers,  the 2-domain LCP alignment can be observed due
to  the  birefringence  of  the  materials,  as  shown  in Fig.  3(a).
With  the  fluorescence  mode,  the  excitation  beam  passes
through  the  polarizer  to  form  a  linearly  polarized  beam.  Due
to  the  anisotropic  absorption  of  the  aligned  QRs  in  compos-
ite  film,  the  positive  and  negative  images  are  obtained  with
the polarization azimuth perpendicular and parallel to the uni-
form  alignment  direction,  are  shown  in Figs.  3(b)  and 3(c),
respectively. This anisotropic absorption and emission proper-
ties are critical special for the QRs only, increasing the unique
security features. 

2.3.  Continuous pattern QRs alignment

In  our  previous  work,  we  achieved  2 μm  of  the  finest
domain sizes of 2D QRs pattern alignment, which was proven
by  the  FM[36].  Since  the  direct  exposure  with  photo  mask  is
still  limited  by  the  resolution  of  masks,  divergence  of  expo-
sure  light  source,  gap  between  mask  and  sample,  etc.,  it  is
extremely  difficult  to  further  scale  down  the  domain  size.
Apart  from  the  orthogonal  pattern  alignment  structure  and
the multi-step exposures, here we present the polarization con-
verting hologram (PCH) for continuous QRs alignment in a sin-
gle step only.  The PCH encodes the macroscopic  topology of

 

(a) (b)

(c)

(d)

Fig. 2. (Color online) 2D Dammann pattern QRs alignment. (a) Process flow of multi domain photo alignment. (b) Photo mask of Dammann grat-
ing. (c) QRs-LCP composite film of Dammann pattern within “SKL” characters. (d) Diffraction pattern of “SKL” characters.
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an  optical  element  (i.e.  lens)  and  converts  this  topological
structure  into  continuously  polarization  azimuth  distribution,
projecting onto the SD1 substrate from the optical setup. The
elegance  of  PCH  is  the  fabricated  holographic  lens  align-
ment profile with extremely high resolution (several of orders
of magnitude higher than direct exposure), and can be estab-
lished in a single step exposure.

The  optical  setup  for  PCH  exposure  is  shown  in Fig.  4(a),
which comprises of a polarizer,  a spatial  retarder,  and a quar-
ter  wave  plate  (QWP)  after  it.  In  this  paper,  the  spatial
retarder is described as a plano-convex lens phase mask, real-
ized  by  sandwiching  a  layer  of  LCP  in  between  a  plano-con-
vex  lens  and  a  glass  substrate,  forming  a  liquid  crystal  cell
with lens-like cell  gap distribution,  the cross-section is  shown
in Fig.  4(b).  The  cell  gap d between  the  plano-convex  lens
and the glass substrate is given by 

d (x, y) = d (r) = R
⎛⎜⎝ −

√
 −

r

R
⎞⎟⎠ ≈ r

R
, (1)

where R = 75 mm is the radius of the plano-convex lens curva-
ture,  and r is  the  radial  distance  from  the  origin.  Since R is
much  greater  than  the  thickness  of  the  sandwiched  LCP

d (r) ∝ r
region,  the  separation  distance d can  be  approximated  by  a
parabola, i.e. .

Since  the  optical  axis  (LC  alignment  direction)  of  the
plano-convex  lens  phase  mask  is  orientated  at  45°,  with
respect  to  the  polarization  azimuth  of  the  linear  polarizer  as
well  as  the  fast  axis  of  QWP  are  aligned  along  the  transmis-
sion  axis,  denoted  as  0°,  the  polarization  azimuth  distribu-
tion at the output plane can be calculated by Jones Matrix: 

Eout = GQWPR (θ)GWP [Γ (r)] R (−θ) Ein = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos (Γ (r)


)

sin (Γ (r)


)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
(2)

Γ (r) = πΔnd (r) /λ
Δn λ

R (θ)
R (−θ) θ

GQWP = [  
 i ]

Ein = [   ]T

where  is the spatially varying retardation of
the  phase  mask,  =  0.133  is  the  birefringence  of  LCP,  =
450  nm  is  the  wavelength  of  the  exposure  light.  and

 are the rotational  matrix,  = 45° is  the angle between
polarization  azimuth  of  the  polarizer  and  the  optical  axis  of

the phase mask.  denotes the QWP with the

fast  axis  align  along  the x-axis.  is  the  polariza-
tion  azimuth  of  the  incident  light,  which  is  along x-axis,  too.

 

Bright Field Fluorescence Field Fluorescence Field(a) (b) (c)

Fig. 3. (Color online) Dammann grating pattern under fluorescence microscope. (a) Bright field image between cross polarizes. Fluorescence field
images with polarization azimuth (b) perpendicular and (c) parallel to uniform alignment direction (white arrow) of QRs in the composite film,
respectively.

 

(a)

(b)

Fig. 4. (Color online) Principle of polarization converting hologram (PCH). (a) Optical scheme of PCH exposure. (b) Cross-section scheme of the
plano-convex lens phase mask.
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Γ (r)
φR(x, y)

Thus,  the  Eq.  (2)  shows  that  after  the  light  propagates
through the PCH system, the polarization azimuth of the inci-
dent  beam  is  rotated  by  an  angle  of /2,  which  is  gov-
erned by the retardation of the phase mask. Using the expres-
sion  from  Eq.  (1),  the  polarization  azimuth’s  rotational  angle
distribution  of  the  exposure  light  onto  the  SD1  alignment
layer,  is given by: 

φR (x, y) = Γ (r)


= (πΔn
Rλ

) r. (3)

Given  that  the  exposure  dose  is  sufficient,  the  orienta-
tion  of  SD1  molecules  will  be  aligned  perpendicular  to  the
polarization azimuth of the exposure light. Since Eq. (1) is con-
tinuous  parabolic  function,  resulting  the  orientation  of  the
SD1  easy  axis  is  continuously  varying  across  the  substrate.
Moreover,  the  recorded  alignment  profile  follows  the
parabolic separation cell  gap of the spatial  plano-convex lens
phase  retarder,  thus  the  alignment  resolution  is  dependent
on the dimensions of the phase mask[50].

With  depositing  the  QRs-LCP  mixtures,  the  directors  of
LCP molecules follow the directions perpendicular to the orien-
tation  of  the  exposure  light  polarization  azimuth,  which  fur-
ther  induces  the  orientation  of  QRs  will  continuously  follow
the  exposure  light  polarization  azimuth  distribution. Fig.  5(a)
shows  the  QRs-LCP  composite  film  under  polarized  optical
microscope (POM),  the LCP molecules (denoted in blue cylin-
ders)  are  following  the  SD1  easy  axis  distribution,  indicating
the theoretically expected profile of a gradual decrease in grat-
ing pitch away from the center with smooth variations in trans-
mittance level, plotted as dark line in Fig. 5(b), due to the bire-
fringent property of LCP materials.

Fig. 5(c) presents the QRs emission under polarized excita-
tion  under  FM.  The  QRs  (denoted  in  yellow  cylinders)  are
arranged  perpendicular  to  the  LCP  direction.  Since  the  ori-
ented  QRs  offer  not  only  polarized  emission  but  also
anisotropic  absorption  at  the  macroscopic  scale,  the  emis-
sion  intensity  varies  along  with  the  angle  between  QRs  and
the  excitation  polarization  azimuth[38],  resulting  gradual
bright  and  dark  rings.  The  emission  intensity  profile  of  QRs
through the center of the rings is also theoretically plotted as
red line in Fig. 5(b), with corresponding position. The through-
out  green  dash  line  is  drawn  as  the  reference  position  of
each picture.

Moreover,  the  POM  image  in Fig.  5(a)  and  the  FM  image
in Fig.  5(c)  are  of  the  same  scale,  however,  the  pitch  of  POM
image  is  a  half  of  that  of  FM  image.  It  can  be  explained  by
the  intensity  profile  of  LCP  under  cross  polarizer  that,  when
the  LC  director  locate  at  either  parallel  or  perpendicular  to
the  polarizer,  the  dark  frame  can  be  observed  under  POM,
whereas the bright frame will  be seen once the LC director is
45°  to  the  polarizer.  On  the  contrary,  the  emission  intensity
from  the  QRs  in  composite  film  observed  under  FM  will  be
strictly following the angle between QRs and excitation polar-
ization  azimuth,  resulting  bright  frame  at  0°  and  dark  frame
at 90° to the polarizer,  respectively. Fig.  5(b) clearly illustrates
the relationship of these two intensity profiles. 

3.  Conclusion

In this paper, we have proposed and successfully demon-
strated the flexibility of CdSe/CdS quantum rods alignment in

quantum  rods-liquid  crystal  polymer  composite  films,  facili-
tated  by  photo-induced  alignment  technique.  A  2D
Dammann  grating  pattern  within “SKL” characters  domains
aligned  quantum  rods  in  composite  film  was  fabricated  by
multi-step  photo  exposure  along  with  several  photo  masks.
With laser beam propagation through the Dammann grating,
the  7  ×  7 “SKL” characters  are  equally  distributed  on  the
screen, presenting unique diffraction features of the compos-
ite  film.  The  FM  is  utilized  to  analyze  the  quantum  rods  pat-
tern emission. In the bright field, the quantum rods-liquid crys-
tal  polymer  composite  film  between  cross  polarizers,  the  2-
domain  liquid  crystal  polymer  alignment  can  be  observed
due to the birefringence of  the materials.  In  the fluorescence
mode,  with  the  anisotropic  absorption  and  emission  of  the
aligned quantum rods in composite film, the positive and neg-
ative images excited by polarized light  are obtained with the
polarization  azimuth  perpendicular  and  parallel  to  the  uni-
form alignment direction, respectively.

To further explore the aligning ability of quantum rods in

 

(a)

(b)

(c)

Fig. 5. (Color online) Continuously QRs-LCP alignment composite film
under  (a)  polarized  optical  microscope,  (c)  fluorescence  microscope
with polarized excitation. (b) Theoretical intensity profiles through cor-
responding horizontal centers, respectively.
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the  composite  system,  the  single  step  polarization  convert-
ing hologram is introduced for continuous alignment of quan-
tum rods. The plano-convex lens phase mask is applied to gen-
erate  the  continuous  SD1  director  distribution  on  the  sub-
strate,  providing  the  geometric  phase  lens  profile  for  quan-
tum  rods-liquid  crystal  polymer  alignment  in  the  composite
film. The polarization optical microscope and fluorescent micro-
scope  are  deployed  to  observe  the  intensity  profiles.  The
pitch  differences  under  different  microscopes  are  observed
due to the birefringent property of liquid crystal polymer and
anisotropic  emission  of  quantum  rods.  With  recent  develop-
ment of quantum rods in liquid crystal polymer composite mix-
tures,  the interaction between the quantum rods ligands and
liquid crystal polymer molecules are improved for better com-
patibility[39, 43],  providing  the  potential  use  of  flexible  photo-
induced quantum rods alignment in quantum rods-liquid crys-
tal polymer composite films for security applications. 
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